

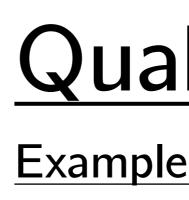
Overview

Model Evolution and Results

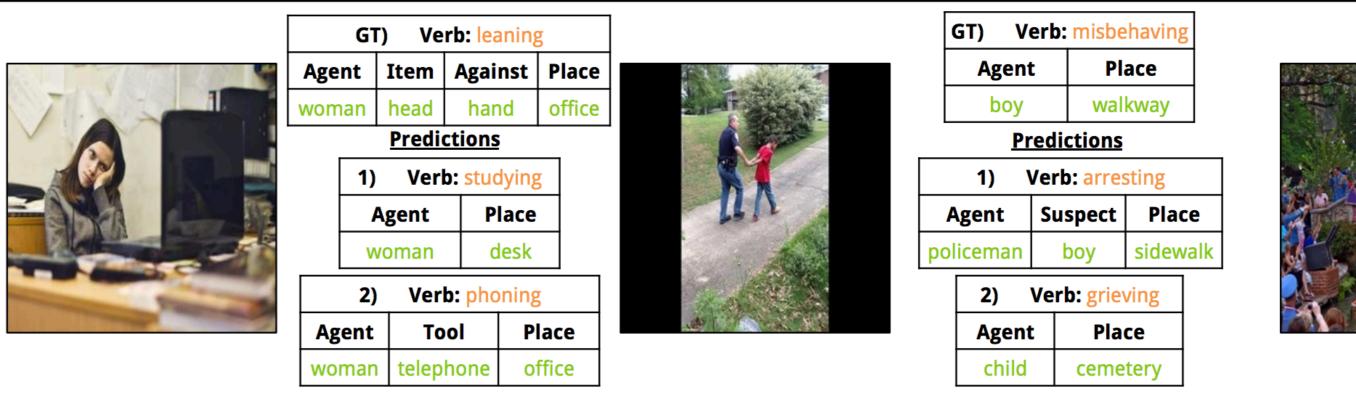
- No-vision, RNN for nouns: model that predicts most likely noun entity sequence given verb
- VGG, RNN for Verbs and Nouns: An RNN model that takes in visual features, predicts verb at first time step, and then noun entities conditioned on predicted noun
- VGG, Verb Classifier and RNN for Nouns: A separate verb classifier with an RNN for noun entity prediction, with shared visual features
- Fusion for Verbs, VGG+RNN for Nouns: Final model (in Overview figure), with separate verb and noun entity networks

Models		Predic	ted Verb	Ground Truth Verbs							
		value	value-all	value	value-all	Mean					
ImSitu Dev Set (Full)											
Tensor Comp. (TC) + Image Reg. (IR) CRF [2]	32.91	25.39	14.87	69.39	33.17	38.02					
Above + Extra 5M Imgs. [2]	34.20	26.56	15.61	70.80	34.82	39.57					
No-vision, RNN for nouns				52.12	17.62						
VGG, RNN for Verbs & Nouns	26.52	20.08	11.80	68.27	32.67	33.87					
VGG, Verb class. and RNN for Nouns	35.35	26.80	15.77	68.44	32.98	38.74					
Fusion for Verbs, VGG+RNN for Nouns	36.11	27.74	16.60	70.48	35.56	40.40					
ImSitu Test Set (Full)											
CRF (IR + TC) + 5M Extra Imgs. [2]	34.12	26.45	15.51	70.44	34.38	39.48					
Fusion for Verbs, VGG+RNN for Nouns	35.90	27.45	16.36	70.27	35.25	40.16					
ImSitu Test Set (Rare)											
CRF (IR + TC) + 5M Extra Imgs. [2]	20.32	11.87	2.52	55.72	12.28	22.95					
Fusion for Verbs, VGG+RNN for Nouns	22.07	12.96	3.37	56.38	13.79	23.89					

Recurrent Models for Situation Recognition


Arun Mallya and Svetlana Lazebnik, University of Illinois at Urbana-Champaign

• Each image in imSitu [1] is labeled with an action verb (out of 504 verbs), and each verb is associated with a unique set of **semantic** roles (out of 1,700 roles) fulfilled by noun entities in the image (out of 11,000 nouns)


• We pose the structured imSitu prediction as that of sequential **noun entity** prediction conditioned on the verb

• We use the fusion action prediction network [4] to predict the verb

• Conditioned on the verb, we use a separate network with an RNN to predict the **noun** entities in an arbitrary but fixed order

Application to Image Captioning

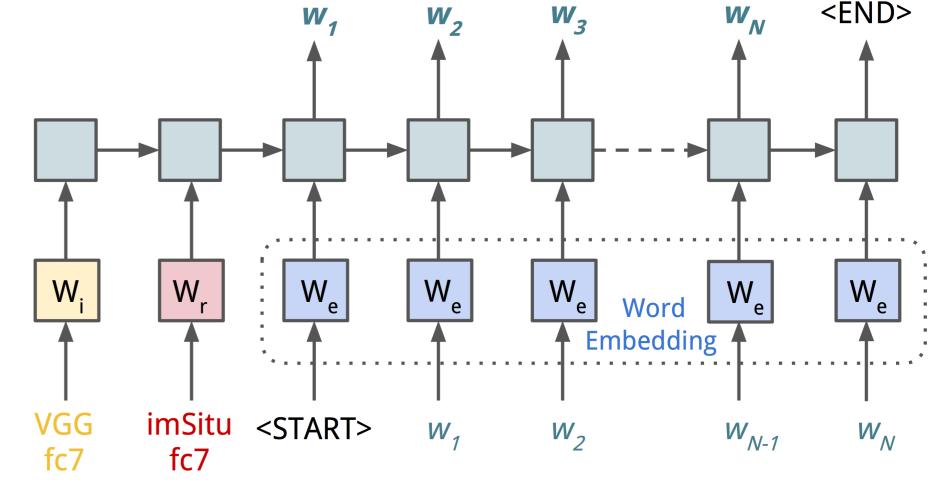
time step

Qualitative Improvements in Image Captioning

VGG: A man with a beard and a tie VGG+imSitu: A man is holding a pair of scissors **GT:** A person holding a pair of scissors open intently

References

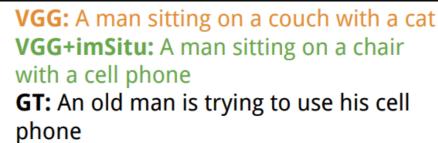
1.	Visual se
2.	Commor
3.	Neuralta
4.	Learning


Qualitative Results and Applications

Example Image Situation Predictions

We augment the Neuraltalk2 [3] captioning model with features from the noun entity prediction network (green VGG-16 network in the Overview figure) as input at the second

We observe an improvement in semantic content of captions, as shown below



Models	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE	CIDEr			
COCO test set of 5000 images (Karpathy split)										
NeuralTalk2 [3]	70.8	53.7	40.1	30.1	24.5		93.0			
VGG + imSitu	71.5	54.6	41.1	31.1	24.8		95.2			
COCO test2014 (40 reference captions)										
NeuralTalk2 [3]	87.9	77.8	66.1	54.7	32.4	66.0	89.1			
VGG + imSitu	88.7	79.4	68.2	57.2	33.2	67.0	91.8			

VGG: A woman is holding a frisbee in a park VGG+imSitu: A young girl is holding a baseball bat on a field **GT:** A girl with a bat standing in a field

emantic role labeling for image understanding, CVPR 2016 nly uncommon: Semantic sparsity in situation recognition, CVPR 2017 alk2, https://github.com/karpathy/neuraltalk2 Models for Actions and Person-Object Interactions with Transfer to Question Answering, ECCV 2016

VGG: A woman holding a cell phone in her hand VGG+imSitu: A woman is brushing her hair in a bathroom **GT:** A little girl is brushing her hair in a bathroom